
International Journal of Solids and Structures 41 (2004) 6905–6924

www.elsevier.com/locate/ijsolstr
Effective elastic properties of solids with two-dimensional
inclusions of irregular shapes

Igor Tsukrov *, Jindrich Novak

Department of Mechanical Engineering, University of New Hampshire, Durham, NH 03824, USA

Received 7 December 2003; received in revised form 16 May 2004

Available online 10 July 2004

Abstract

A computational procedure to calculate the contribution of irregularly shaped inclusions into the effective moduli of

two-dimensional elastic solids is proposed. This procedure is based on the analysis of a representative volume element

subjected to a prescribed macrostress. For each type of inclusion, the compliance contribution tensor is constructed

using a combination of Kolosov–Muskhelishvili complex variable technique and numerical conformal mapping.

Application of this procedure to regularly shaped inhomogeneities produces results that are in good correspondence

with analytical predictions. The effective properties are first derived in the approximation of non-interacting inclusions.

Then, several first-order micromechanical models for interacting inclusions are considered.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The ability to determine the effective elastic properties of solids with inhomogeneities is important to

predict the overall mechanical behavior of fiber and particle reinforced composites, analyze the intercon-

nect structures of microelectronic circuits, and evaluate the level of damage in parts with microdefects. The

approaches to this problem include evaluation of upper and lower bounds (Hashin and Shtrikman, 1962,

1963; Hill, 1963, 1964; Walpole, 1966a,b and later publications), analytical calculations using available

elasticity solutions (Eshelby, 1957 and later publications), and direct numerical modeling (for example,

finite element analysis) as in Garboczi and Day (1995), Zohdi et al. (1996), Zohdi et al. (2001) and B€ohm
et al. (2004). Analytical predictions are currently limited to very few regular inclusion shapes (ellipses and
polygons in 2D, ellipsoids and polyhedra in 3D). Numerical simulations can be used for practically any

geometry and distribution of inclusions. However, they are not convenient when one wants to separate and

analyze contributions of different types of inhomogeneities. Also, any modification in positions and relative
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volumes of inclusions requires new simulations––this can make the parametric studies of microstructures

quite consuming.

This paper combines numerical and analytical techniques: the elasticity problem for each type of

inclusion is solved numerically, and this solution is used in the analytical procedure of micromechanical
modeling. The approach is based on the concept of compliance contribution tensor as described, for

example, in Kachanov et al. (1994) and Sevostianov and Kachanov (1999, 2002). The analysis is done in the

framework of linear elasticity; inclusions are assumed to be perfectly bonded and randomly distributed in

the composite. The effective moduli are first derived in the approximation of non-interacting inclusions. The

non-interaction results are then used as a basic building block for several approximate schemes (Mori–

Tanaka, self-consistent and differential) in the micromechanical modeling of solids with interacting

inclusions.

The effective elastic compliance S must satisfy the basic relation e ¼ S : r where e and r are the second-
rank macroscopic strain and stress tensors defined as
e ¼ 1

2A

Z
c
ðunþ nuÞdc; r ¼ 1

A

Z
c
txdc: ð1:1Þ
In the equations above, A is the representative area element (RAE) with boundary c, and u, n, t and x are

the displacement, outward unit normal, traction and position vectors of the boundary points, respectively,

see Fig. 1. Colon denotes contraction over two indices, and un, nu, tx are the dyadic products of the

corresponding vectors.
To characterize the contribution of inclusions to the effective elastic compliance, we introduce the

inclusion compliance contribution tensor HRAE as
S ¼ SM þHRAE; ð1:2Þ
where SM is the compliance tensor of the matrix material. The compliance contribution tensor (H-tensor)

was used by Kachanov et al. (1994) and Tsukrov and Novak (2002) to analyze solids with various 2D and

3D holes, and by Sevostianov and Kachanov (1999, 2002) to model solids with elastic ellipsoidal inclusions.
The case of elastic polygon-shaped inclusions was considered in Nozaki and Taya (1997, 2001). The

effective elastic properties of 2D solids with polygonal and elliptical holes and rigid inclusions were pre-

sented in Jasiuk et al. (1994), Jasiuk (1995), Lee (1999) and Tsukrov (2000). Also, extensive literature on

elastic properties of solids with circular elastic inclusions (this problem is relevant for composites reinforced

by unidirectional fibers of circular cross-section) is available; see for example Hashin and Rosen (1964) and
x1

x 2

t n u
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Fig. 1. Representative area element.
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Ju and Zhang (1998). Closed form formulae for the ribbon-reinforced composites (modeled as elastic

ellipsoidal cylinders) are presented in Zhao and Weng (1990). General considerations and some results on

micromechanical modeling of solids with regularly shaped heterogeneities can be found in the books of

Mura (1987), Aboudi (1991) and Nemat-Nasser and Hori (1993). In this paper, we present the derivation
procedure for H-tensors and numerical results for 2D inclusions of arbitrary irregular shapes.

The approach is based on the results for one inclusion. We represent the total strain and stress tensors (as

defined by Eq. (1.1)) in a reference area ~A containing an inclusion of area AI (Fig. 2) as sums
e ¼ eM þ De; r ¼ rM þ Dr; ð1:3Þ

where
eM ¼ 1
~A

Z
AM

eðxÞdA; rM ¼ 1
~A

Z
AM

rðxÞdA ð1:4Þ
are related to the average strain and stress in the matrix as eM ¼ AM
~A

heiM and rM ¼ AM
~A

hriM. Inclusion
contributions De and Dr are derived from the divergence theorem as:
De ¼ � 1

2~A

Z
C
ðunþ nuÞdC; Dr ¼ � 1

~A

Z
C
txdC; ð1:5Þ
where n is the unit normal to the inclusion boundary C directed inward the inclusion.
Then, the contribution of the inclusion to the overall compliance of ~A is given by tensor H, and the

following relation must hold
H : r ¼ De � SM : Dr: ð1:6Þ

Tensor H possesses the usual symmetries of the elastic compliance tensor (Hijkl ¼ Hjilk ¼ Hklij) and, in 2D

case, has no more than six independent components. In the local coordinate system x1x2 with unit vectors e1
and e2 (Fig. 2), the compliance contribution tensor for an arbitrary 2D inclusion has the following structure
H ¼ H1111e1e1e1e1 þ H2222e2e2e2e2 þ H1122ðe1e1e2e2 þ e2e2e1e1Þ þ H1211ðe1e2e1e1 þ e2e1e1e1

þ e1e1e1e2 þ e1e1e2e1Þ þ H1222ðe1e2e2e2 þ e2e1e2e2 þ e2e2e1e2 þ e2e2e2e1Þ þ H1212ðe1e2e1e2
þ e1e2e2e1 þ e2e1e1e2 þ e2e1e2e1Þ: ð1:7Þ
x1

x2

e1

e2

n
Γ

A=AM+AI
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AM

~

Fig. 2. Inclusion of irregular shape.
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To find the components of H-tensor for a particular shape, we assume that the total stress in the reference

area is equal to the applied remote stress, and evaluate the additional strain and stress tensors. Let us

consider a uniaxial tension P inclined at an angle h to x1-axis. The stress tensor for such loading is
r ¼ P ½cos2 he1e1 þ sin2 he2e2 þ sin h cos hðe1e1 þ e2e2Þ	: ð1:8Þ
Contraction of this tensor with H given by Eq. (1.7) produces the following expressions:
ðH : rÞ11 ¼
P
2
½ðH1111 þ H1122Þ þ ðH1111 � H1122Þ cos 2h þ 2H1211 sin 2h	;

ðH : rÞ22 ¼
P
2
½ðH2222 þ H1122Þ � ðH2222 � H1122Þ cos 2h þ 2H1222 sin 2h	;

ðH : rÞ12 ¼
P
2
½ðH1211 þ H1222Þ þ ðH1211 � H1222Þ cos 2h þ 2H1212 sin 2h	:

ð1:9Þ
Now, the components of H are obtained from Eq. (1.6) by comparing these expressions with the corre-

sponding elasticity predictions for additional strain and stress given by Eq. (1.5) for various values of

angle h.
The constructed H-tensors can be utilized to predict the effective elastic moduli using either non-inter-

action approximation or some first-order micromechanical modeling scheme. In the approximation of non-

interacting inclusions, it is assumed that the reference area ~A of each inclusion is equal to RAE, and the
stress field is not disturbed by the presence of other inclusions. Then, the overall response of the material

with many non-interacting inclusions can be characterized by the sum of H-tensors as
S ¼ SM þHNI; ð1:10Þ
where tensor HNI ¼
P

HðkÞ (summation may be replaced by integration over orientations, if computa-

tionally convenient) is the non-interaction approximation of tensor HRAE.

The predictions of more advanced approximate micromechanical schemes can be obtained from HNI.

Detailed discussion on the structure of H-tensors in different approximate schemes can be found in

Eroshkin and Tsukrov (in press). Section 6 utilizes these results and presents effective moduli of composite

materials in several approximations of interacting inclusions.

Thus, the effective elastic properties of composites with irregularly shaped inclusions can be expressed in
terms of tensor H. To find H for each inclusion geometry, the additional strain and stress tensors must be

calculated and substituted into Eq. (1.6). This is done by solving the elasticity problem for one inclusion

and utilizing Eq. (1.5). In the case of some regular shapes, the elasticity problem can be solved analytically

and the explicit expressions for additional strain and stress can be found. Section 2 presents an effective

numerical technique to find elasticity solutions for inclusions of highly irregular shapes. The limiting cases

of holes and rigid inclusions are covered in Section 3. The non-interaction effective elastic moduli of solids

with inclusions of irregular shapes and their mixtures are presented in Sections 4 and 5, correspondingly.

Section 6 illustrates how the results of preceding chapters can be utilized to find the effective moduli in the
assumption of interacting inclusions.
2. Calculation of the additional strain and stress using numerical conformal mapping

The additional strain and stress due to the presence of an inclusion are found from Eq. (1.5) if the

inclusion boundary displacements and tractions under arbitrary loading are known. In 2D elasticity, any

stress state can be represented as a sum of two tensions/compressions in principal directions. The numerical

technique presented here solves the elasticity problem for a 2D inclusion of arbitrary shape under remotely
applied uniform tension. The procedure is based on the complex variable approach (Muskhelishvili, 1963).
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It uses the conformal mapping of the exterior of an inclusion onto the interior of a unit circle with the

mapping function found by numerical evaluation of the Schwarz–Christoffel integral. Application of this

numerical conformal mapping (NCM) method to the analysis of irregularly shaped holes in elastic matrix is

described by Tsukrov and Novak (2002).
Note that the analytical solution of the elasticity problem for elliptical inclusion was given by Hardiman

(1954). For polygonal shapes, one can use the components of the Eshelby’s tensor provided by Rodin

(1996), see also Nozaki and Taya (1997, 2001) and Rodin (1998). A complex variable approach to the

Eshelby’s problem is also presented in Ru (1999). Greengard and Helsing (1998) proposed an efficient

numerical algorithm to solve the Sherman integral equation, and applied it to analyze solids with periodic

arrangements of irregularly shaped inclusions.

Let us consider an inclusion of arbitrary shape in the complex plane z ¼ x1 þ ix2 with the origin inside of
the inclusion (Fig. 2). The solution requires mapping of the interior of the unit circle in canonical plane f
onto the exterior of the inclusion region in z plane by analytic mapping function xðfÞ. For arbitrary
polygons, this can be done by evaluation of the Schwarz–Christoffel integral
Fig. 3.
xðfÞ ¼
Z f

f1

Y
k

1

�
� f

fk

�1�bk 1

f2
df; ð2:1Þ
where bkp are the interior angles of the polygon and fk are the prevertices (points on the unit circle in the
canonical plane that correspond to the vertices of the polygon zk).
We approximate the boundary of the inclusion by N -sided polygon with vertices on the boundary (Fig.

3). The accuracy of this approximation depends on the number of vertices. In the case of regular polygons,

the Schwarz–Christoffel integral can be evaluated analytically (Savin, 1961). For more complicated shapes,

this integral must be evaluated numerically (we used the Matlab Schwarz–Christoffel toolbox developed by

Driscoll (1996)).
The numerical character of the mapping function causes very low accuracy in calculations of the higher

order derivatives needed for evaluation of strains and stresses. Therefore, we try to obtain the mapping

function in closed form by slight modification in the shape of the approximating polygon. The procedure is

described in the next paragraph.

The integrand is expanded in truncated Laurent series with the center at the origin f ¼ 0
Y
k

1

�
� f

fk

�1�bk 1

f2
ffi
XM
j¼�2

ajf
j: ð2:2Þ
(Note that the integrand in (2.1) is analytic and single valued in the entire domain of the unit disk except at

singular points: prevertexes f ¼ fk and the origin f ¼ 0. Also, coefficient a�1 is set to zero to satisfy the
single valuedness of the resulting mapping function.) Series (2.2) is convergent in the entire domain of the

unit disk except at the specified singular points on the boundary and at the origin. The accuracy of this

approximation depends on the number of terms M in the expansion, as illustrated in Fig. 4. As can be seen,
ω(ζ)

Approximation

NCM for the inclusion of irregular shape: points on the boundary correspond to the vertices of the approximating polygon.



Fig. 4. Approximation of the original shape using mapping function with 3 and 15 terms in series (2.2).
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only 15 terms in the expansion are used to achieve relatively good correspondence of the geometries. The

mapping function and its derivatives are obtained by integrating and differentiating series (2.2).

Having constructed the mapping function xðfÞ, we are able to utilize the Kolosov–Muskhelishvili ap-
proach to solve the elasticity problem for a 2D inclusion in an infinite plate loaded by remotely applied

uniform tension. According to this approach (Muskhelishvili, 1963), the displacements u, v and stresses rxx,
ryy and sxy in the plate and inclusion can be expressed in terms of four analytical functions of complex
variable uMðfÞ, wMðfÞ, uIðzÞ and wIðzÞ (stress functions):
uM þ ivM ¼ 3� mM
EM

uMðfÞ �
1þ mM
EM

xðfÞ
x0ðfÞ

u0
MðfÞ

"
þ wMðfÞ

#
;

rMxx þ rMyy ¼ 4Re
u0
MðfÞ

x0ðfÞ ;

rMyy � rMxx þ 2isMxy ¼ 2
u00
MðfÞ

x02ðfÞ

 "
� u0

MðfÞ
x00ðfÞ
x03ðfÞ

!
xðfÞ þ w0

MðfÞ
x0ðfÞ

#
;

uI þ ivI ¼ 3� mI
EI

uIðzÞ �
1þ mI
EI

zu0
IðzÞ

h
þ wIðzÞ

i
;

rIxx þ rIyy ¼ 4Reu0
IðzÞ;

rIyy � rIxx þ 2isIxy ¼ 2½zu00
I ðzÞ þ w0

IðzÞ	;

ð2:3Þ
where EM, mM and EI, mI are the Young’s moduli and Poisson’s ratios of the matrix and inclusion materials
in the case of plane stress. For the plane strain problem, the expressions E ¼ E=ð1� m2Þ and m ¼ m=ð1� mÞ
must be substituted instead of E and m for both matrix and inclusion materials.
The stress functions for the matrix region can be represented in the following form:
uMðfÞ ¼ uM ;1ðfÞ þ uM ;oðfÞ; wMðfÞ ¼ wM ;1ðfÞ þ wM ;oðfÞ; ð2:4Þ
where uM ;1ðfÞ ¼ ðP=4ÞxðfÞ and wM ;1ðfÞ ¼ �ðP=2Þe�2ihxðfÞ are the stress functions for the plate without
inclusion under uniaxial tension P applied at the infinity at angle h (Savin, 1961). The additional terms,
uM ;oðfÞ and wM ;oðfÞ, correspond to the disturbance in the stress field caused by the presence of inclusion. We
are looking for these additional terms in the form of Taylor series
uM ;oðfÞ ¼
X1
n¼1

aMn fn; wM ;oðfÞ ¼
X1
n¼1

bMn fn; ð2:5Þ
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that ensure zero rigid body translations and rotation of the infinitely distant parts of the plane and elim-

inate all indeterminate coefficients from the problem.

The stress functions for the inclusion region, uIðzÞ and wIðzÞ, are expanded in series of Faber polyno-
mials PnðzÞ that are characteristic for the given domain and must be computed beforehand (we used the
Matlab Schwarz–Christoffel toolbox developed by Driscoll (1996)).
Table

Compo

EM ¼ 2
uIðzÞ ¼
X1
n¼1

aInPnðzÞ; wIðzÞ ¼
X1
n¼1

bInPnðzÞ: ð2:6Þ
Some discussion on the usage of Faber polynomials in the problems of two-dimensional elasticity can be

found in Levin and Zingerman (2002).

The coefficients in series (2.5) and (2.6) are calculated from the conditions of continuity of the dis-
placements and boundary force resultants across the interface between the inclusion and matrix:
ðuþ ivÞI ¼ ðuþ ivÞM; ðf1 � if2ÞI ¼ ðf1 � if2ÞM: ð2:7Þ
Substitution of Eqs. (2.3) and (2.4) into the first equation of (2.7) yields the following form of the dis-

placement continuity condition:
� Pð1þ mMÞ
EM

xðfÞ
4

3� mM
1þ mM

�

� 1
�
þ e

2ih

2
xðfÞ

�

¼ � 1þ mM
EM

xðfÞ
x0ðfÞ

u0
MðfÞ

"
þ wMðfÞ

#
þ 3� mM

EM
uMðfÞ �

3� mI
EI

uIðzÞ þ
1þ mI
EI

½zu0
IðzÞ þ wIðzÞ	: ð2:8aÞ
1

nents of the compliance contribution tensor H for various elastic inclusions H 

ijkl ¼ ð~A=AIÞHijkl, EI ¼ 105 MPa,

� 104 MPa and mI ¼ mM ¼ 0:3
H 

1111 H 


2222 H 

1212 H 


1122 H 

1211 H 


1222

)6.762E)05 )4.805E)05 )3.382E)05 1.768E)05 3.239E)14 )1.352E)13

)5.858E)05 )5.855E)06 )3.777E)05 1.698E)05 )1.011E)10 9.874E)10

)5.768E)05 )5.769E)05 )3.480E)05 1.788E)05 )7.256E)11 9.095E)11

)5.917E)05 )5.443E)05 )3.671E)05 1.627E)05 )1.255E)06 )1.007E)16
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The force resultant continuity condition takes the form:
Fig. 5.

with p

inclusi
� P
2
½xðfÞ � e2ihxðfÞ	 ¼ uM ;oðfÞ þ

xðfÞ
x0ðfÞ

u0
M ;oðfÞ þ wM ;oðfÞ � uIðzÞ � zu0

IðzÞ � wIðzÞ: ð2:8bÞ
By requesting that Eqs. (2.8a) and (2.8b) are satisfied at a discrete set of boundary points, we obtain a

system of linear equations for unknown coefficients aMn , bMn , aIn, and bIn. After this system is solved, the
stresses and displacements on the inclusion boundary can be readily obtained from Eq. (2.3). With the

above procedure, 60–250 boundary points proved to be sufficient to obtain very accurate results for most of

the analyzed shapes.
Knowing the boundary displacements and tractions, we can calculate the components of additional

strain and stress tensors for any direction h of uniaxial tension (by numerically evaluating integrals (1.5)).
Repeating this procedure for various angles we find the components of De and Dr as numerical functions of

h. The components of H-tensor are obtained by comparing these functions with Eq. (1.9). We select a
sufficient number of h values and substitute them into (1.9) together with the corresponding values of De

and Dr. This produces a system of linear equations for components of H-tensor. Note that to improve the

accuracy, one may choose more values of h (we used 10) and obtain an overdetermined system of linear
equations. The components of H are then found by solving this system using the least square method.
Table 1 presents the components of H-tensor calculated for selected elastic inclusions with EI ¼ 105 MPa

and mI ¼ 0:3 embedded in the matrix having EM ¼ 2� 104 MPa and mM ¼ 0:3.
Deformation of the elastic inclusions under uniaxial tension remotely applied at h ¼ 30� with respect to x1-axis. The boundaries
oints represent the undeformed configuration. (a) Ellipse of eccentricity 1:2, (b) 3-cusps hypotrochoid, (c) irregularly shaped

on.
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Fig. 5 shows these inclusions in both undeformed configuration and under P ¼ 1 MPa tension inclined at
30� to x1 direction. The deformed configuration is given in magnification 60,000:1. The boundaries of the
inclusions are discretized using 60 points.

The procedure has been validated by comparing the numerically calculated components ofH-tensor with
the results obtained from available analytical solutions. In the case of elastic elliptical inclusion of eccen-

tricity 2:1 shown in Table 1 (analytical results of Hardiman, 1954), the maximum discrepancy d evaluated
as ðHNCM

ijkl � HAnalytical
ijkl Þ=HAnalytical

ijkl is less than 0.2%. Comparison with available solutions for rigid inclusions

and holes is given in Section 3.
3. Inclusion compliance contribution tensor in limiting cases of rigid inclusions and holes

The procedure described in Section 2 can be applied to determine the compliance contribution tensors in

the limiting cases of rigid inclusions and holes. Table 2 presents the components of H-tensors for rigid

inclusions of elliptical (of eccentricity 2:1), triangular-type hypotrochoidal and irregular shape, placed in

elastic matrix having EM ¼ 5� 104 MPa and mM ¼ 0:3. Both numerical and analytical results are provided.
Analytical expressions for the contribution of regularly shaped rigid inclusions can be obtained based on

the results of Hardiman (1954) and Savin (1961).

The effective properties of solids with such inclusions were investigated by Jasiuk (1995) and Tsukrov

(2000). Using the H-tensor formalism, the contribution of rigid elliptical inclusion with semiaxes a and b is
Table

Compo

mM ¼ 0

H 

111

H 

222

H 

121

H 

112

H 

121

H 

122
H1111 ¼ � p
~AEM

2a2 þ 3abþ abm2M þ 2b2m2M
ð3� mMÞð1þ mMÞ

;

H2222 ¼ � p
~AEM

2b2 þ 3abþ abm2M þ 2a2m2M
ð3� mMÞð1þ mMÞ

;

H1122 ¼ � p
~AEM

abð1� m2MÞ � 2ðaþ bÞ2mM
ð3� mMÞð1þ mMÞ

;

H1212 ¼ � p

2~AEM

abðaþ bÞ2ð1þ mMÞ
a2 þ abð1� mMÞ þ b2

:

ð3:1Þ
2

nents of the compliance contribution tensor H for various perfectly rigid inclusions H 

ijkl ¼ ð~A=AIÞHijkl, EM ¼ 5� 104 MPa and

:3

NCM Analytical d NCM Analytical d NCM

1 )4.083E)05 )4.091E)05 )0.002 )3.700E)05 )3.713E)05 )0.003 3.699E)05

2 )2.532E)05 )2.536E)05 )0.001 )3.699E)05 3.713E)05 )0.004 3.176E)05

2 )1.826E)05 )1.828E)05 )0.001 )2.466E)05 )2.476E)05 )0.004 )2.107E)05

2 1.018E)05 1.020E)05 )0.002 1.232E)05 1.240E)05 )0.007 1.117E)05

1 1.994E)14 0 – )1.508E)09 0 – )2.009E)06

2 )5.750E)14 0 – 1.492E)09 0 – )1.055E)07
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In the case of triangular-type hypotrochoidal rigid inclusion, the components of H are
Fig. 6

The b

(c) irre
H1111 ¼ H2222 ¼
AI
~AEM

mMð7� 29mMÞ � ð43þ 7mMÞ
7ð1þ mMÞð3� mMÞ

;

H1122 ¼
AI
~AEM

mMð43þ 7mMÞ � ð7� 29mMÞ
7ð1þ mMÞð3� mMÞ

;

H1212 ¼
AI
~AEM

ð7� 29mMÞ � ð43þ 7mMÞ
14ð3� mMÞ

:

ð3:2Þ
A comparison between our numerical results and analytical predictions given by formulae (3.1) and (3.2)

shows good correspondence with the maximum discrepancy d of 0.7% (Table 2).
Fig. 6 presents rigid inclusions in both original and rotated/translated configuration under remotely

applied tension P ¼ 1 MPa inclined at 30� with respect to x1 direction. The displaced configurations are
given in magnification 50,000:1. The inclusion boundaries are discretized using the approximating polygon

with 60 vertices.

For holes, the geometry and matrix material characteristics in the expressions for the components of H

decouple (Kachanov et al., 1994). Furthermore, H-tensor is independent of the matrix Poisson’s ratio.

Thus, the material independent shape factors h1 � h6 can be introduced as follows:
. Rotation (translation) of the rigid inclusions under uniaxial tension remotely applied h ¼ 30� with respect to x1-axis.
oundaries with points represent the original configuration. (a) Ellipse of eccentricity 1:2, (b) triangular-type hypotrochoid,

gularly shaped inclusion.



Fig. 7.
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h1 ¼
EM~A
AI

H1111; h2 ¼
EM~A
AI

H2222; h4 ¼
EM~A
AI

H1122 ¼
EM~A
AI

H2211;

h3 ¼
2EM~A
AI

H1212 ¼
2EM~A
AI

H1221 ¼
2EM~A
AI

H2112 ¼
2EM~A
AI

H2121;

h5 ¼
EM~A
AI

H1211 ¼
EM~A
AI

H2111 ¼
EM~A
AI

H1112 ¼
EM~A
AI

H1121;

h6 ¼
EM~A
AI

H1222 ¼
EM~A
AI

H2122 ¼
EM~A
AI

H2212 ¼
EM~A
AI

H2221:

ð3:3Þ
In Tsukrov and Novak (2002), both the NCM procedure and the finite element analysis (FEA) were used to

calculate h-factors for various regular and irregular hole shapes, and to predict effective properties of
porous materials. The NCM results were in good correspondence with the analytical predictions of

Kachanov et al. (1994), Jasiuk et al. (1994) and Zimmerman (1991), while FEA estimates were slightly less

accurate.

It can be shown by direct substitution that the NCM predictions of the effective elastic properties of
solids with cracks and elliptical holes agree with the results reported in Lee et al. (1997) and Lee (1999). This

observation also shows a potential of the proposed technique to characterize damage evolution in the case

of irregularly shaped defects.

Influence of various inclusion and matrix stiffnesses can also be investigated using the NCM procedure.

Fig. 7 presents values of H1111 and H1212 for triangular-type elastic hyportochoid (mI ¼ 0:3) embedded in the
elastic matrix having EM ¼ 104 MPa and mM ¼ 0:3. The Young’s modulus of the inclusion varies in the
range of EI ¼ 10–107 MPa. The x-axis of the graph shows inclusion-to-matrix stiffness ratio EI=EM on
the logarithmic scale. The analytical results of Kachanov et al. (1994) for the hole and Jasiuk (1995) for the
rigid inclusion are indicated by stars. Our numerical experiments show that for ratios EI=EM P 100 and

EI=EM6 0:01, the inclusion can be considered as rigid and as a hole, respectively.
-0.0002

-0.0001

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.001 0.01 0.1 1 10 100 1000

H.1111

H.1212

Analytical solution for hole
(Kachanov et. al., 1994)

Analytical solution for rigid
inclusion (Jasiuk, 1995)

-0.6%
-1.1% -5.0%

-9.5%

-0.5%

-1.0%
-4.5% -8.6%

-35.2%

-33.1%

-0.8%-1.1%-3.6%-6.4%

-22.8%

-0.4%-0.8%-3.8%-7.0%
-24.6%

Difference from
the analytical
solution for hole Difference from the

analytical solution
for rigid inclusion

1000
M

I
E

E

H1111

H1212

Variation of H-tensor components for triangular-type hypotrochoidal inclusion with the ratio of materials’ stiffnesses EI=EM
104 MPa and mI ¼ mM ¼ 0:3).



6916 I. Tsukrov, J. Novak / International Journal of Solids and Structures 41 (2004) 6905–6924
4. Effective elastic moduli of solids with many non-interacting inclusions of the same type

This section presents the formulae for the effective elastic properties of 2D solids containing elastic

inclusions of identical shape. It is assumed that the location of inclusions is random and uncorrelated with
their size and orientation. The predictions are obtained in the non-interaction approximation. This

approximation is rigorous at small inclusion densities. As demonstrated in Section 6, it can also be used in

some well-developed approximate schemes to predict the effective mechanical properties of solids with

interacting inclusions.

In the case of non-symmetrical geometry of an inclusion, H-tensor has six independent components as

discussed in Section 1. The effective moduli of solids with such inclusions are expressed in terms of the

mechanical properties of matrix material, compliance contribution tensor components and inclusion

concentration (inclusion volume fraction). The inclusion concentration is defined as
f ¼ 1
A

X
k

AðkÞ
I ; ð4:1Þ
where AðkÞ
I is the area of the kth inclusion in the representative area A.

Let us apply the procedure described in Section 1 to obtain the effective compliances of the material
containing a set of parallel inclusions of identical shape. The non-interaction approximation of the overall

compliance contribution tensor is equal to the sum of contributions HðkÞ from all inclusions. Assuming that

the local axes of all inclusions coincide with the global coordinate axes, the contribution of each kth
inclusion can be expressed in terms of the same H
-tensor defined as
HðkÞ ¼ AðkÞ
I

A
H
: ð4:2Þ
The components of H
 for some inclusion shapes are given in Tables 1 and 2.

Utilizing Eq. (1.10), the components of the effective elastic compliance tensor are
S1111 ¼
1

EM
þ fH 


1111; S2222 ¼
1

EM
þ fH 


2222; S1122 ¼ � mM
EM

þ fH 

1122;

S1212 ¼
1þ mM
2EM

þ fH 

1212; S1211 ¼ fH 


1211; S1222 ¼ fH 

1222:

ð4:3Þ
Variation of Young’s modulus with the orientation of uniaxial tension for a solid with parallel inclusions of
irregular shape (as in Fig. 5c) is presented in Fig. 8. The results for circular, triangular and elliptical

inclusions (a=b ¼ 2) are also shown for comparison. As can be observed, the curve for material with
irregular inclusions is not symmetric suggesting that no obvious symmetry of the effective elastic tensor

exists. The variation of E=EM for this material is less pronounced than that for the material with elongated
(elliptical) inclusions: irregular inclusions (Fig. 5c) introduce less anisotropy into the effective tensor than

elliptical of eccentricity 1:2 (Fig. 5a). Thus, deviation from isotropy is dictated by the elongation of the

shape rather that the peculiarities of its geometry.

Note that isotropic behavior of composite materials is possible in the case of parallel (or non-randomly
oriented) non-interacting inclusions, if the inclusions are isotropic objects as discussed in Tsukrov and

Novak (2002) and Eroshkin and Tsukrov (in press). The examples of these inclusion shapes include circles

and regular polygons with the exception of squares. For such materials, the effective moduli are
E ¼ EM
1þ fEMH 


1111

; m ¼ mM � EMfH 

1122

1þ fEMH 

1111

: ð4:4Þ
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Fig. 8. Variation of the effective Young’s modulus with orientation at inclusion concentration f ¼ 0:1 (EI ¼ 105 MPa,
EM ¼ 2� 104 MPa and mI ¼ mM ¼ 0:3).
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In Fig. 8, there is no variation of E=EM for circular and triangular inclusion shapes. If inclusions are stiffer
than matrix, the circular reinforcement makes composite more compliant than triangular of the same

concentration.

When inclusion shapes have two perpendicular axes of geometrical symmetry, the overall properties of

material with a set of parallel inclusions are orthotropic. The engineering constants are expressed in terms
of the compliance contribution tensor as
E1 ¼
EM

1þ fEMH 

1111

; E2 ¼
EM

1þ fEMH 

2222

;

m12 ¼
mM � EMfH 


1122

1þ fEMH 

1111

; G12 ¼
EM

2ð1þ mM þ 2fEMH 

1212Þ

:

ð4:5Þ
Materials with randomly oriented non-interacting inclusions exhibit isotropic behavior even in the case of

highly irregular inclusion shapes. The effective Young’s modulus and Poisson’s ratio are (note that only
four out of six independent components of H are present):
E ¼ EM
1þ fEM 3

8
ðH 


1111 þ H 

2222Þ þ 1

4
ð2H 


1212 þ H 

1122Þ

� � ;
m ¼

mM � fEM 1
8
ðH 


1111 þ H 

2222Þ þ 3

4
H 

1122 � 1

2
H 

1212

� �
1þ fEM 3

8
ðH 


1111 þ H 

2222Þ þ 1

4
ð2H 


1212 þ H 

1122Þ

� � :
ð4:6Þ
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Fig. 9. Effective Young’s modulus as function of inclusion concentration for material with randomly oriented elastic inclusions

(EI ¼ 105 MPa, EM ¼ 2� 104 MPa and mI ¼ mM ¼ 0:3).
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For example, the effective Young’s modulus of the elastic solid containing randomly oriented irregular
inclusions of the shape shown in Fig. 5c can be obtained using the values ofH-tensor components presented

in Table 1. Fig. 9 illustrates the dependence of E=EM on the inclusion concentration for EI ¼ 105 MPa,
EM ¼ 2� 104 MPa and mI ¼ mM ¼ 0:3. Comparison with circular and elongated elliptical shapes (a=b ¼ 5)
shows that for randomly oriented and randomly located non-interacting inclusions that are stiffer than

matrix, the more elongated shapes produce higher increase in the effective stiffness. Note that all the curves

in Fig. 9 lie within the bounds provided by Hill (1964).
5. Effective elastic moduli of solids with a mixture of non-interacting inclusions of various types

In this section, we consider materials with a mixture of inclusions of different shapes. The effective

moduli of such materials are presented in terms of partial inclusion concentrations
fN ¼ 1
A

X
k

AðkÞ
I;N ; ð5:1Þ
where AðkÞ
I;N refers to the area of inclusion having geometry of N th type. If a material contains several sets of

parallel inclusions with the inclusions of N th type inclined at angle hN with respect to x1 axis of the global
coordinate system x1x2, the effective compliances are as follows:



Fig. 10

inclusi
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S1111 ¼
1

EM
þ
X
N

fN ½m4H 

1111 þ n4H 


2222 þ 2m2n2ðH 

1122 þ 2H 


1212Þ � 4m3nH 

1211 � 4mn3H 


1222	N ;

S2222 ¼
1

EM
þ
X
N

fN ½n4H 

1111 þ m4H 


2222 þ 2m2n2ðH 

1122 þ 2H 


1212Þ þ 4mn3H 

1211 þ 4m3nH 


1222	N ;

S1122 ¼ � mM
EM

þ
X
N

fN ½m2n2ðH 

1111 þ H 


2222Þ þ ðm4 þ n4ÞH 

1122 � 4m2n2H 


1212 þ 2ðm3n� mn3ÞH 

1211

þ 2ðmn3 � m3nÞH 

1222	N ;

S1212 ¼
1þ mM
2EM

þ
X
N

fN ½m2n2ðH 

1111 þ H 


2222Þ � 2m2n2H 

1122 þ ðm4 � 2m2n2 þ n4ÞH 


1212

þ 2ðm3n� mn3ÞH 

1211 þ 2ðmn3 � m3nÞH 


1222	N ;
S1211 ¼

X
N

fN ½m3nðH 

1111 � H 


1122 � 2H 

1212Þ þ mn3ð�H 


2222 þ H1122 þ 2H 

1212Þ þ ðm4 � 3m2n2ÞH 


1211

þ ð�n4 � 3m2n2ÞH 

1222	N ;

S1222 ¼
X
N

fN ½m3nð�H 

2222 þ H 


1122 þ 2H 

1212Þ þ mn3ðH 


1111 � H 

1122 � 2H 


1212Þ þ ð�n4 þ 3m2n2ÞH 

1211

þ ðm4 � 3m2n2ÞH 

1222	N ;

ð5:2Þ
where ðH 

1111;H



2222; . . .ÞN are the components of the compliance contribution tensor of the inclusions of N th

type, mN ¼ cos hN and nN ¼ sin hN .
θ

024.0

2.0

=
=

γ
triaf

02.0

1.0

=
=

γ
triaf

018.0

05.0

=
=

γ
triaf

ME

E

θ

0 30 60 90 120 150
1.15

1.20

1.25

1.30

1.35

1.40

180

. Variation of Young’s modulus with orientation for material with mixture of rigid triangular inclusions and parallel elastic

ons of irregular shape (firreg ¼ 0:1, EI ¼ 105 MPa, EM ¼ 2� 104 MPa and mI ¼ mM ¼ 0:3).



6920 I. Tsukrov, J. Novak / International Journal of Solids and Structures 41 (2004) 6905–6924
The effective elastic properties of the material with a mixture of randomly oriented inclusions are iso-

tropic. The effective Young’s modulus and Poisson’s ratio are
Fig. 11

and mM
E ¼ EM
1þ EM

P
N
fN 3

8
ðH 


1111 þ H 

2222Þ þ 1

4
ð2H 


1212 þ H 

1122Þ

� �
N

;

m ¼
mM � EM

P
N
fN 1

8
ðH 


1111 þ H 

2222Þ þ 3

4
ðH 


1122 � 1
2
H 

1212Þ

� �
N

1þ EM
P
N
fN 3

8
ðH 


1111 þ H 

2222Þ þ 1

4
ð2H 


1212 þ H 

1122Þ

� �
N

:

ð5:3Þ
As an example, we consider the variation of Young’s modulus with orientation for the material with a

mixture of randomly oriented rigid triangular inclusions and parallel elastic irregular inclusions (of type
shown in Fig. 5c) for EI ¼ 105 MPa, EM ¼ 2� 104 MPa and mI ¼ mM ¼ 0:3. The concentration of irregular
inclusions is fixed at firreg ¼ 0:1, and the concentration of triangular inclusions, ftria, varies from 0.05 to 0.2.
Note that triangular inclusions are isotropic objects as mentioned in Section 4, so neither parallel nor

randomly oriented inclusions of this type alone introduce any anisotropy. But, as can be seen from Fig. 10,

the increase in the concentration of triangular inclusions in the presence of parallel inclusions raises the

overall anisotropy: parameter c ¼ ðEmax � EminÞ=EM changes from 0.018 for ftria ¼ 0:05 to 0.024 for
ftria ¼ 0:2.
6. Micromechanical modeling of solids with interacting inclusions

The results of the preceding sections are obtained in the approximation of non-interacting inclusions.

They can be used to predict the effective elastic properties when interaction between the inclusions is
f

MK
K

Irregularshape:non-interaction

Ellipse(1:10):non-interaction

Hill: Analytical solution
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All shapes :Mori-Tanaka

Ellipse (12): non-interaction

. Effective bulk modulus of composite material with phases of identical shear moduli (EI ¼ 63:043 GPa, mI ¼ 0:45, EM ¼ 50 GPa
¼ 0:15). Inclusions are stiffer than matrix.
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approximated by any of the well-developed first order micromechanical schemes (self-consistent,

Mori–Tanaka, etc.). Let us consider a two-phase composite with arbitrarily shaped inclusions of compli-

ance SI homogeneously dispersed in the matrix material. It is assumed that location of the inclusions is

uncorrelated with their size and orientations. The micromechanical predictions can then be obtained from
HNI (Eroshkin and Tsukrov, in press). In the case of Mori–Tanaka approximation, when each inclusion is

assumed to be subjected to the remote stress equal to the average stress in the matrix phase, the compliance

contribution tensor HMT and the effective compliance S are
Fig. 1

mI ¼ mM
HMT ¼ HNI : ½ð1� f ÞðSI � SMÞ þHNI	�1 : ðSI � SMÞ; S ¼ SM þHMT: ð6:1Þ

Self-consistent method assumes the inclusions to be placed in the equivalent matrix having the overall

property of composite S:
HSC ¼ ðSI � SMÞ : ðSI � SÞ�1 : HNIðS;SIÞ; S ¼ SM þHSC: ð6:2Þ

where HNIðS;SIÞ is the non-interaction compliance contribution tensor when inclusion SI is placed into

matrix S. In the differential method, the non-interacting inclusions are incrementally added to the material

until the final inclusion volume fraction f is reached. The H-tensor and effective compliance are found from
differential equation
dHDIFF

dt
¼ 1

f ð1� tÞH
NIðSðtÞ;SIÞ; S ¼ SM þHDIFF; ð6:3Þ
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where SðtÞ denotes the compliance of the composite having inclusion volume fraction t. Eq. (6.3) is solved
with the initial condition HDIFFðt ¼ 0Þ ¼ 0.
Fig. 11 shows the Mori–Tanaka and non-interaction estimates of the effective bulk modulus of the

unidirectional composite (plane strain) with two phases having identical shear moduli G ¼ 21:739 GPa
(mI ¼ 0:45 and mM ¼ 0:15). In this case, the components of H-tensor are the same for all inclusion shapes,
and the Mori–Tanaka prediction coincides with the analytical solution of Hill (1964), which is given by the

following formula:
K ¼ fIKIðKM þ GÞ þ ð1� fIÞKMðKI þ GÞ
fIðKM þ GÞ þ ð1� fIÞðKI þ GÞ : ð6:4Þ
Fig. 12 illustrates application of the differential and Mori–Tanaka approximate schemes to a 2D solid with

interacting inclusions of irregular shape shown in Fig. 5c (EI ¼ 100 GPa and mI ¼ 0:3) inserted in a matrix
material (EM ¼ 20 GPa and mM ¼ 0:3). As can be seen, the Mori–Tanaka approach predicts the most
compliant response of the composite material. This result is in agreement with the observation of Dvorak

and Srinivas (1999) that Mori–Tanaka estimates constitute a lower bound when inclusions are stiffer than
matrix.
7. Conclusions

Contribution of the irregularly shaped inclusions to the effective elastic moduli of two-dimensional

composites can be evaluated using the numerical conformal mapping procedure. First, the inclusion
compliance contribution tensor is found for the individual inclusion of a given shape. This is done by

substitution of the numerically calculated components of the additional strain and stress tensors in Eq.

(1.6). In the assumption of non-interacting inclusions, the overall compliance contribution tensor HNI is

obtained by direct summation of contributions of all inclusions in the representative area. When mixtures

of inclusions of different types are present in the material, this tensor is expressed in terms of partial

inclusion concentrations. HNI tensor can also be used in the first order micromechanical models to predict

the effective elastic properties of materials with interacting inclusions.

The NCM procedure to solve the elasticity problem for an inclusion is based on the Kolosov–Mus-
khelishvili complex variable approach. It requires numerical construction of the conformal mapping

function in the form of Schwarz–Christoffel integral. The computationally effective and stable algorithm

involves the approximation of the integrand by a truncated Laurent series. The complex potentials (stress

functions) are expanded in Taylor series in the matrix region, and in the series of Faber polynomials in the

inclusion domain. The unknown coefficients in the expansions are then obtained by satisfying the stress and

displacement continuity conditions across the interface of the inclusion and matrix regions.

Application of the procedure to the limiting cases of holes and perfectly rigid inclusions produces results

that are in good agreement with known analytical solutions. The maximum observed discrepancy for the
rigid inclusions approximated by 60 boundary points is less than 1%. Comparison with the results based on

Hardiman’s solution for elastic elliptical inclusion yields even better accuracy of 0.2%. Also, our numerical

simulations show that for the ratios EI=EMP 100 and EI=EM6 0:01, the inclusion can be considered as rigid
and as a hole, respectively.

Non-random orientation of the irregularly shaped inclusions results in anisotropy of the overall prop-

erties. It is observed, that for this anisotropy, the peculiarities of the inclusion shapes are not as important

as their elongation in general. Also, for the inclusions that are stiffer than matrix, the same concentration of

more elongated shapes produces a stiffer composite. For the inclusions that are softer than matrix, the effect
is opposite.
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